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Variable reduction is a crucial step for accelerating model building
without losing potential predictive power of the data. With the advent of
Big Data and sophisticated data mining techniques, the number of
variables encountered is often tremendous making variable selection or
dimension reduction techniques imperative to produce models with
acceptable accuracy and generalization. The temptation to build an
ecological model using all available information (i.e., all variables) is hard
to resist. Ample time and money are exhausted gathering data and
supporting information. Analytical limitations require us to think
carefully about the variables we choose to model, rather than adopting a
naive approach where we blindly use all information to understand
complexity. The purpose of this paper is to illustrate the use of some
techniques to effectively manage the selection of explanatory variables
consequently leading to a parsimonious model with highest possible
prediction accuracy. It may be noted that the following techniques may
or may not be followed in the given order contingent on the data. The
very basic step before applying following techniques is to execute
univariate analysis for all the variables to get observations frequency
count as well as missing value count. Variables with large proportion of
missing values can be dropped upfront from the further analysis.
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Correlation Analysis
We begin with developing a Correlation matrix between the dependent
and independent variables, and between all the possible 2-pair
combinations of independent variables. Correlation describes the
strength of the linear association between two variables. It is measured
by the correlation coefficient (r). The sign of the correlation coefficient
indicates the direction of association and it always lies between -1
(perfect negative linear association) and 1 (perfect positive linear
association). A zero value of r indicates no linear relationship. Let’s say
we want to calculate a correlation matrix for variables all VAR1 VAR2
VAR3….VARN, including TAR - the target variable. 

The following is an example of a correlation matrix: 



 As a first screening check, we will analyse the correlation coefficient
between the dependent variable (TAR) and the independent variables
(VAR1, VAR2, VAR3,….,VARN). A correlation coefficient (abs) value of
>=0.65 can be taken as a benchmark value for a significant linear
association between the variables. The variables with a significant
linear association with the target variable, indicated by a large
correlation coefficient (r), should be included in the model at a prelim
level. In the above example, VAR3 and VARN are significantly
associated with TAR and should be included in the model.
 
We further move ahead by analysing the correlation coefficient of the
2-pair combinations of independent variables. A higher correlation
coefficient (r) between two independent variables implies redundancy,
indicating a possibility that they are measuring the same construct. In
such a scenario, it would be prudent to select either of the two
variables in consideration, or adopt an alternative approach to
selection which involves two most widely used techniques viz. Principal
Component Analysis (PCA) and Exploratory Factor Analysis. 



Principal Component Analysis is a variable reduction procedure and
helps in obtaining a smaller number of variables called Principal
Components, which account for most of the variance in the observed
variables from a group of large number of redundant (correlated)
variables. 

Principal Component Analysis (PCA)

In the above table, we can see that the variables VAR3 and VAR4 are
highly correlated with r =0.95. Similarly, VAR2 and VAR4 with r =0.78
are significantly correlated. Principal Component Analysis can be
performed on a set of correlated variables to obtain a new variable
(Principal Component) which will have the properties of all the variables
in question. A Principal Component is computed as a linear combination
of optimally-weighted variables under consideration and can be used
for subsequent analysis. One can compute as many principal
components as the number of independent variables which can be
further analysed and retained on the basis of the variability explained
by them.

In SAS, a procedure called PRINCOMP is used for computing Principal
Components where each component is a linear combination of the
original variables (in our example VAR2, VAR3 and VAR4), with
coefficients equal to the Eigenvectors of the correlation or covariance
matrix.

Principal Component Analysis can also be used for exploring polynomial
relationships and for multivariate outlier detection.

Exploratory Factor Analysis is also a variable reduction procedure,
similar to Principal Component Analysis in many respects but the
underlying procedure for both the techniques remains the same.
However, conceptually there are significant differences between the
two techniques which are explained later in this section.

Exploratory Factor Analysis



Factor analysis is a statistical techniques concerned with the reduction
of a set of observable variables in terms of a small number of latent
factors. The underlying assumption of factor analysis is that there exists
a number of unobserved latent variables (or "factors") that account for
the correlations among observed variables, such that if the latent
variables are partialled out or held constant, the partial correlations
among observed variables all become zero. In other words, the latent
factors determine the values of the observed variables.

The term "common" in common factor analysis describes the variance
that is analyzed. It is assumed that the variance of a single variable can
be decomposed into common variance that is shared by other variables
included in the model, and unique variance that is unique to a particular
variable and includes the error component. Common factor analysis
(CFA) analyzes only the common variance of the observed variables;
principal component analysis considers the total variance and makes no
distinction between common and unique variance.

The selection of one technique over the other is based upon several
criteria. First of all, what is the objective of the analysis? Common factor
analysis and principal component analysis are similar in the sense that
the purpose of both is to reduce the original variables into fewer
composite variables, called factors or principal components. However,
they are distinct in the sense that the obtained composite variables
serve different purposes. In common factor analysis, a small number of
factors are extracted to account for the intercorrelations among the
observed variables--to identify the latent dimensions that explain why
the variables are correlated with each other. In principal component
analysis, the objective is to account for the maximum portion of the
variance present in the original set of variables with a minimum number
of composite variables called principal components.



Secondly, what are the assumptions about the variance in the original
variables? If the observed variables are measured relatively error free, (for
example, age, years of education, or number of family members), or if it is
assumed that the error and specific variance represent a small portion of
the total variance in the original set of the variables, then principal
component analysis is appropriate. But if the observed variables are only
indicators of the latent constructs to be measured (such as test scores or
responses to attitude scales), or if the error (unique) variance represents a
significant portion of the total variance, then the appropriate technique to
select is common factor analysis. Since the two methods often yield
similar results, only CFA will be illustrated here.

Next we look at Multicollinearity, which occurs when independent
variables are highly correlated among themselves. For instance, we have
5 independent variables – VAR1, VAR2, VAR3, VAR4, and VAR5. If any one
of these variables can be expressed as a linear/non-linear function of
other variable(s), then we say that data suffers from multicollinearity. In
such a scenario, the coefficient estimates may change erratically in
response to small changes in the data. The presence of multicollinearity
affects the validity of individual predictor’s estimated coefficient. The
Variance Inflation Test (VIF) is recommended for a more thorough
solution to the problem.

Variance Inflation Factor (VIF) is defined as:

Multicollinearity Check - Variance Inflation Factor (VIF)



For each explanatory variable i, R-square is defined as the coefficient of
determination in a regression model where independent variable i is
considered as target variable and all other independent variables are
explanatory variables. Higher R-square results in higher VIF and indicates
high correlation between the target variable (i.e. independent variable i)
and all other independent variables.

The VIF provides information on how large the standard error is
compared with what it would be if the variables were uncorrelated with
the other predictor variables in the model. It is calculated for each
explanatory variable and those with high values are removed. The
definition of ‘high’ is somewhat arbitrary but a common thumb-rule
classifies a VIF value of >=5 significantly high implying high
multicollinearity. A cut-off VIF valueof <=2 is used by most businesses
since it offers a more stringent and clear rule.

Now, once we have decided on the cut-off value for VIF, the next step is to
check and compare the VIF values of the observed explanatory variables.
Variables with a VIF value greater than the cut-off value may be dropped
from the model. If for instance, the VIF values for all the explanatory
variables is greater than the cut-off value then one can choose to keep
the variables with the lowest VIFs. However, this is not a thumb-rule to
address the problem of collinearity in the data. Different practitioners
use different ways of handling the problem of multicollinearity and the
probable success of the different methods depend on the severity of the
collinearity problem and the business problem at hand.



Wald Chi-Square is another popular technique which assists in variable
selection. The Wald Chi-Square test statistic is the squared ratio of the
Estimate to the Standard Error of the respective predictor. The probability
that a particular Wald Chi-Square test statistic is as extreme as, or more
so, than what has been observed under the null hypothesis is given by Pr
> Chi-Sq.

For instance an business analyst, who has data on sales and number of
sales executive in a retail outlets, wonders whether sales is associated
with number of sales executive in a retail outlets. Say  is the average
increase in sales for outlets having greater than 50 executives as
compared to outlets having less than 50 executives: then the Wald test
can be used to test whether  is 0 (in which case sales has no association
with number of sales executive in a retail outlets) or non-zero (sales varies
with respect to number of executives presents in the outlet).

Wald chi-square is calculated to check the association between the
dependent variable and the independent variable. We use univariate
Logistic regression to calculate the Wald Chi-square statistics for each
independent variable. Wald chi-square value greater than 6 is considered
to be better as higher the value higher is the association between the
dependent and independent variable. Variables having chi-square value
less than 6 can be dropped from the model as they do not have significant
association with the dependent variable.

A Fashion brand in US uses direct sales agents to sell products directly to
the customer. Agents host the collection of the company in their local
areas .The Company reported a decline in the revenues for past couple of
years, soto expand and grow the business company wants to understand
the attributes which affect the performance of an agent so that they can
bring efficient agents on board.

 

WALD CHI Square



After running univariate logistic regression for all the independent
variable on dependent variable, summary table having Wald chi-square
statistic for each independent variable is made.

From the above table we can see that variables having Wald chi-square
statistic greater than 6 are more significant as compared to variables
having chi-square value less than 6 i.e. Variable 3 and variable 4 are
highly significant as compared to variable 1 and variable 2.

Variables having Wald chi-square statistic less than 6 can be dropped
from the model building exercise. It will enhance the model performance
and there will be very less loss of information because of dropping those
variables. This technique can also be used to check the impact of dropping
variable(s) on the model’s predictive accuracy, though to be implemented
at the later stages of model development.



 

The VARCLUS procedure can also be used as a variable-reduction method. A
large set of variables can often be replaced by the set of cluster components
with little loss of information. A given number of cluster components does
not generally explain as much variance as the same number of principal
components on the full set of variables, but the cluster components are
usually easier to interpret than the principal components, even if the latter
are rotated.

The VARCLUS procedure divides a set of numeric variables into either
disjoint or hierarchical clusters. Associated with each cluster is a linear
combination of the variables in the cluster, which may be either the first
principal component or the centroid component. PROC VARCLUS tries to
maximize the sum across clusters of the variance of the original variables
that is explained by the cluster components.

By default, PROC VARCLUS begins with all variables in a single cluster. It
then repeats the following steps:

Step 1: A cluster is chosen for splitting. Depending on the options specified,
the selected cluster has either the smallest percentage of variation
explained by its cluster component (using the PERCENT= option) or the
largest eigenvalue associated with the second principal component (using
the MAXEIGEN= option).

Variable Clustering Using Proc Varclus

Step 2: The chosen cluster is split into two clusters by finding the first two
principal components, performing an orthoblique rotation (raw quartimax
rotation on the eigenvectors), and assigning each variable to the rotated
component with which it has the higher squared correlation.

Step3: Variables are iteratively reassigned to clusters to maximize the
variance accounted for by the cluster components. The reassignment may
be required to maintain a hierarchical structure.

The procedure stops when each cluster satisfies a user-specified criterion
involving either the percentage of variation accounted for or the second
eigenvalue of each cluster. By default, PROC VARCLUS stops when each
cluster has only a single eigenvalue greater than one, thus satisfying the
most popular criterion for determining the sufficiency of a single underlying
factor dimension.



 

The following statements create the variable clusters:

PROC VARCLUS DATA=SAMPLE CENTROIDMAXCLUSTERS= N;
VAR PREDICTOR VARIABLES;
RUN; 

The output will include the total number of clusters created, the number of
variables used in the analysis, the number of observations, and the
maxeigen threshold used to create the clusters. It will show the number of
final clusters PROC VARCLUS has created. PROC VARCLUS will also show
which variables have been assigned to the various clusters. 

The above table shows the final output of PROC VARCLUS. We can select
variables from each cluster - if the cluster contains variables which do not
make any business sense, the cluster can be ignored. A variable selected
from each cluster should have a high correlation with its own cluster and a
low correlation with the other clusters. The 1-R**2 ratio can be used to
select these types of variables. Small values of this ratio indicate good
clustering. Variables having low 1-R**2 ratio can be selected. Two or more
variables can also be selected from the cluster.



 

Last but not the least, Information Value (IV)and Weight of Evidence (WOE)
technique is very useful for variable selection in model building process. The
main advantage of this technique is that it can assess both continuous and
categorical variables.

Weight of Evidence analyzes the predictive power of a variable in relation to
the targeted outcome, Information Value assesses the overall predictive
power of the variable being considered, and therefore can be used for
comparing the predictive power among competing variables.

The Following tables illustrate how the weight of evidence and information
value is calculated.

Information Value (IV) & Weight Of Evidence (WOE)

% Caller: number of callers of the tier/number of all callers
% nonCaller: number of noncallers of the tier/all noncallers



 

Information value (IV) tells the predictive power of a variable. IV is
calculated using the following formula:

The Following table has all the variables Information Value in Descending
order



Now the question arises how to interpret the IV ? The Below table states the
rule of thumb for IV interpretation.

Mostly, Variables with medium and strong predictive power are selected for
model building. This is one of the most efficient technique for variable
reduction.

Business Scenario

In one of exercises, our team had 200 variables initially in the dataset. It’s
not viable to build a model putting all the 200 variables. So we used the
above discussed techniques to reduce down to a manageable number for
model building. After analyzing all the variable reduction techniques result
and as per business understanding we came down to 50 variables for model
building. 50 variables is also a high number but manageable for building a
model.



 

All the 50 variables are put in to the model building process, various
selection techniques i.e. forward/ backward/step-wise are deployed while
building the model. After doing this exercise, let say we came down to 15
variables which are statistically significant. Ideally a good model should
not have more than 10 predictor variables. So now we will reduce down
from 15 to 10 on the basis of business understanding as to which variable
are highly explainable both statistically and as per business implication or
we can choose the top 10 variables on the basis of the wald chi-square
statistic . Now we form different combination of variables to reduce down
from 15 to 10 variables and build model for each set of variables which 
 gives us ‘N’ number of models. Now these ‘N’ models will be relatively
compared with eachother basis the model performance parameters i.e. lift
chart, K-S Statistics, Hosmer and Lemeshow test, Gini coefficient. On the
basis of Models performancecomparison, we select the best predictive
model. This best model has the final set of predictor variables which are
highly significant statistically and also as per business implications.

Conclusion

In this paper we have discussed many vital techniques for variable
reduction. Each technique has their own relevance and importance. So,
variable selection is an art as well as science. Use of variable selections
techniques differ with respect to different business scenarios and also
depends upon the intellectual decision making of an analyst.
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