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ABSTRACT
This study presents a very new and innovative approach to clas-
sify the elephants using a deep learning framework [2] which
is built on transfer learning and data augmentation techniques.
By using the features of MobileNetV2 as the base model, fol-
lowed by different layers, the model achieved a high accuracy in
classifying between images of elephants and other objects. This
paper explains in detail about the end-to-end process, including
dataset preparation, pre-processing, model architecture, and eval-
uation metrics. The results indicated the effectiveness of the pro-
posed model in obtaining a high classification accuracy with a
robust generalization across the training and validation datasets.
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1. INTRODUCTION
The accurate classification [8] of wildlife is very important for
correct ecological monitoring and efforts for conservation. Among
all the wildlife species, elephants play one of the most important
role in maintaining ecological balance in various different ways.
Their activities such as seed dispersal and habitat modification
influence many other species which makes their presence and
health an indicator to judge the ecological well being. The classical
methods for identifying and classifying elephants often rely on
manual observation and recording. These methods are not only
labor intensive but also are prone to many human errors. These
limitations creates a need for reliable and automated solutions to
improve precision and efficiency in elephant classification.

For wildlife managers, in particular, the right classification of
elephants is of great importance. This is because, they make it
possible for the managers to acquire accurate data within a short
time. Detailed information about elephants helps the wildlife
managers in implementing better resources and designing more
efficient interventions. Furthermore, because of human-wildlife
conflict, poaching, and habitat loss, elephant populations are often

vulnerable and prone to effective monitoring and classification
systems are crucial for the conservation of such groups and the
species in the long run.

In the present study, transfer learning is integrated with Mo-
bileNetV2 architecture [11] to fulfill the necessity of introducing
new approaches in the wildlife classification. A novel lightweight
CNN architecture called MobileNetV2 is known for its ease of
image classification while having lesser computations than tra-
ditional architectures. Using MobileNetV2 features and a visual-
based dataset, a model that can effectively classify elephants is pre-
sented. New approaches in deep learning classification often re-
quire high computational facilities turning out to be a disadvan-
tage for the models. Higher efficiency in monitoring and track-
ing wildlife populations like elephants are enabled through below
methodology, their habitats and also intrusion detection systems.

2. METHODOLOGY
2.1 Dataset Preparation
The images captured by the cameras are taken from the BRT tiger
reserve, which are eventually stored in cloud buckets, labeled with
information such as camera number, time and location from where
it was captured. Although for the training of the model we only
require the class of the image. information. The dataset was struc-
tured into two classes: ”elephants” and ”others.” All images were
gathered in various lighting conditions and poses to ensure robust
training. The integrity of class-specific directories was checked, en-
suring balanced representation across categories.

2.2 Data Augmentation and Pre-processing
Pre-processing normalizes pixel values to a scale of [0, 1] to ensure
consistency across all datasets. The ImageDataGenerator class is
used for this purpose.

(1) Training: rescale=1./255 is applied to scale image pixel values
(2) Validation and Test: Rescaling ensures compatibility with the

trained model

For Data Augmentation a series of transformation were carried out
to improve the diversity in the dataset:

(1) Rescaling: Pixel values are normalized to the range [0, 1]
(2) Rotation: Images are randomly rotated up to 40 degrees
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(3) Shifting: Random horizontal and vertical shifts are applied up
to 20 % of the image dimensions

(4) Shearing: Images undergo random shearing transformations

(5) Zooming: Random zooms up to 20 % are applied

(6) Flipping: Horizontal flipping is performed

(7) Fill Mode: Missing pixels from transformations are filled using
the nearest method

These augmentations simulate real-world variations and enhance
the robustness of the model.

Generators are configured to load and pre-process images dynami-
cally during training, validation, and testing:

(1) Training Generator: Combines augmentation and pre-
processing, shuffling data for each epoch to ensure model
exposure to diverse transformations

(2) Validation Generator: Performs pre-processing without aug-
mentation, providing consistent data for validation

(3) Test Generator: Similar to the validation generator, ensuring
unbiased evaluation

The configuration parameter included: target size: Standardized
image dimensions, batch size: Number of images per batch,
class mode: Specifies binary classification, shuffle: Determines
whether data is randomized.

This research shows how significant data augmentation and
pre-processing are in a image classification tasks. The use of
ImageDataGenerator provides a flexible and scalable solution for
enhancing datasets and optimizing neural network performance

The data was split into training (60%), validation (20%) and
test (20%) subsets using ImageDataGenerator. The dataset was
prepared for binary classification, with class indices generated for
mapping.

2.3 Dataset Images
The images have been procured from BRT tiger Reserve. The
features like time, camera number and location have been removed
from the image for better visualization here.

Below are few of the images of both the classes that were
being used in the training process:

Fig 1. Image Class = Elephant

Fig 2. Image Class = Elephant

Fig 3. Image Class = Others

Fig 4. Image Class = Others

2.4 MobileNetV2
MobileNetV2 [7] is a lightweight and efficient convolutional neu-
ral network [10] architecture designed for mobile and embedded
vision applications. It is a successor to the original MobileNet
and improves upon it by introducing key architectural innovations
for enhanced performance and reduced computational complexity.
MobileNetV2 is widely used for tasks such as image classification,
object detection, and semantic segmentation.
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Fig 5. MobileNetV2 Architecture

Step wise process in the model:

(1) Input Image: The input to the model is an image of size
32×32×3, where 32×32 represents the spatial resolution, and
3 denotes the RGB channels

(2) Initial Convolutional Layer: A convolutional layer applies a fil-
ter to extract initial low-level features, such as edges and tex-
tures. The output after this layer has a size of 16×16×32, where
32 is the number of feature maps generated by the filters

(3) Bottleneck Residual Blocks: The main building block of this
architecture is the Bottleneck Residual Block. These blocks are
efficient for feature extraction and form the backbone of the
network

(4) Transition Layers: After the final bottleneck block, a convolu-
tional layer further adjusts the dimensionality of features. The
output size is reduced to 1×1×1290, representing highly con-
densed spatial information

(5) Fully Connected Layer: The final stage is a fully connected
layer that maps the features into the output class probabilities.
The output size is 1×1×3, corresponding to a classification task
with 3 output classes

Bottleneck Residual Block (Detailed View):
Inside each block:

(1) Point wise Convolution (1×1 Conv, ReLU6): Reduces or ex-
pands the number of channels, adjusting feature dimensional-
ity

(2) Depth wise Separable Convolution (3×3, ReLU6): This effi-
ciently applies convolutions to each channel separately, reduc-
ing the computational cost

(3) Point wise Convolution (1×1 Conv): This restores the channel
dimensions as required by the architecture

(4) Skip Connection: This adds the input of the block to its out-
put (if the dimensions match), enabling the gradient flow and
improving model optimization

The output dimensions of these blocks may vary, with each block
thus transforming the spatial and channel dimensions.

2.5 Transfer Learning
Transfer Learning [1] is a machine learning technique where a
model trained on one task is adapted to perform a different but re-
lated task. It uses the pre-trained models those are trained on large

datasets for general tasks (like image recognition or natural lan-
guage processing)—and fine tunes them to solve specific problems
with smaller datasets.

Fig 6. Flowchart for Transfer Learning approach

This methodology highlights the integration of DBN training and
transfer learning [9] to improve neural network performance in new
domains. By transferring knowledge from a pre-trained model, the
framework enables faster convergence and better generalization for
the target task, making it a valuable approach in scenarios with lim-
ited labeled data.

(1) Start: The process begins by initializing the framework for data
input and network training

(2) Input Source Data: The source data, represented as X, is fed
into the system, starting with the first dataset (i=1)

(3) DBN Network Structure Initialization: A deep belief network
(DBN) is constructed with an appropriate architecture suitable
for the source data

(4) Initialize Network Parameters: The initial parameters of the
DBN network are set, including weights (Wi), biases (Bi), and
other connection weights (Ci)

(5) Neural Network (NN) Training: The DBN undergoes standard
training to optimize its parameters for the given data

(6) Evaluate Performance: The prediction error, computed as
|Ypred − Ylab|, is checked against a predefined threshold. If
the error is within the acceptable range, the model parameters
(Wi, Bi, Ci) are saved otherwise the process loops back for
further refinement of the DBN

(7) Transfer Learning Phase: First select a specific layer (t) from
the source network to transfer to a target network. Then the
first t-layers of the target network are replaced with the corre-
sponding layers from the trained DBN and the parameters for
the other layers are also initialized

(8) Fine-tune Network Parameters: The target network is fine-
tuned using transfer learning techniques to optimize its per-
formance for the new task or dataset

(9) Evaluate Transfer Learning Results and output results
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2.6 Experiments Discussion
Before finalizing the model architecture various Deep Learning
[11] experiments were carried out to find the best architecture for
elephant classification. Following are the experiments done:

(1) Training a CNN form scratch: A Convolutional Neural
Network (CNN) [12] was built from scratch without any
pre-trained models. Architecture involved three 2D Convolu-
tional layers with three max pooling layers and flattening of
the layers. It also involved a dense layer with 128 neurons,
a dropout layer and a output layer which used a sigmoid
activation function. This is a classical image classification
architecture which was employed to classify elephants.
This architecture was discarded since the it gave the test
accuracy of 86.54 % and validation loss was 0.3093. These
performance metric are lower than the final approach and thus
this model was discarded for elephant classification.

Fig 7. CNN Architecture employed for elephant classification

(2) Pre-trained VGG16 Architecture: The experiments with the
VGG16 [13] architecture provided essential insights into the
limitations of using deep, pre-trained networks for smaller
datasets. While VGG16’s robust feature extraction capabilities
were known but the model’s weakness to overfit, its compu-
tational overhead, and its inefficiency for our task ultimately
led to shifting to a different architecture. These findings led
to the need for a more tailored architecture capable of better
generalization and faster convergence, which helped us to

select the final model outlined in the next section of this paper.
VGG16 (Base Model) - GlobalAveragePooling2D Layer -
Dense Layer - Output Layer. This was the architecture for this
model. The performance metric is as follows:

(a) Validation Loss: 0.5855
(b) Validation Accuracy: 85.45 %

Fig 8. VGG16 Architecture employed for elephant
classification

2.7 Model Architecture
A transfer learning-based approach [1] was used in the approach,
leveraging MobileNetV2 as the feature extractor. The Base Model
that is MobileNetV2 pre-trained on ImageNet [6] with the top clas-
sification layer removed was used.
In this architecture MobileNetV2 [7] as seen above was initialized
with pre-trained ImageNet weights, excluding the top layers and it
was Configured to accept images of size 224x224 with three color
channels. The base model’s layers were frozen (trainable=False) to
retain the pre-learned features.
MobileNetV2 was more favourable for our architecture as,

(1) MobileNetV2 is pre-trained on the ImageNet dataset, which
contains over a million images across 1,000 classes. This ex-
tensive pre-training enables the model to learn rich and di-
verse feature representations that are transferable to other im-
age classification tasks, including elephant classification

(2) It employs depthwise separable convolutions, significantly re-
ducing the number of parameters and computational load com-
pared to traditional convolutional networks. This efficiency is
beneficial for handling large datasets and for deployment on
devices with limited computational resources

(3) The architecture introduces inverted residual blocks with lin-
ear bottlenecks, enhancing the model’s ability to capture fine-
grained features while maintaining a lightweight structure.
This design choice contributes to improved performance with-
out incurring additional computational costs
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2.8 Custom Layers in Model Architecture
There were few custom layers that were added in the model ar-
chitecture to improve the classification ability. This includes the
following alongwith the advantage it gave for the classification
purpose-

(1) Global Average Pooling: Incorporating a GlobalAveragePool-
ing2D layer reduces the spatial dimensions of the feature maps
output by the base model, converting them into a single vec-
tor per feature map. This operation effectively summarizes the
presence of features across the entire image, which is benefi-
cial for classification tasks

(2) Fully Connected Layer with ReLU Activation: Adding a dense
layer with 128 units and ReLU activation introduces non-
linearity and allows the model to learn complex patterns and
feature combinations specific to elephant images. This layer
acts as a bridge between the generic features learned by the
base model and the specific patterns required for accurate clas-
sification

(3) Dropout Layer: Implementing a Dropout layer with a rate of
0.5 provides regularization by randomly setting input units
to zero during training. This prevents co-adaptation of fea-
tures and reduces the likelihood of over-fitting, enhancing the
model’s generalization capabilities

(4) Output Layer with Sigmoid Activation: The final dense layer
uses a sigmoid activation function, appropriate for binary
classification or multi-label classification scenarios. It outputs
probabilities that an input image belongs to each class, facili-
tating threshold-based decision-making

Fig 9. Final Model Architecture

2.9 Training and Validation
The model was trained using the Adam optimizer and binary cross-
entropy loss function, ensuring compatibility with binary classifi-
cation tasks. The model is trained for up to 20 epochs with a batch
size of 32. The training process involves iterating over the train-
ing data, updating weights based on the loss, and validating on the
reserved subset.

Early Stopping was employed which monitors the validation loss
and stops training if no improvement is observed over five consec-
utive epochs, restoring the best weights and model checkpoint was
set up as it saves the best model based on validation loss during
training.

2.10 Evaluation Metrics
Key metrics included:

(1) Accuracy: Overall, correct predictions
(2) Loss: Binary cross-entropy loss
(3) Learning Curves: Visualization of training and validation ac-

curacy and loss over epochs

Post-training, the model’s performance is evaluated on the valida-
tion set using metrics such as loss, accuracy, confusion matrix, and
classification report as mentioned above. Visualization of training
history provides insights into the model’s learning dynamics.

3. RESULTS AND DISCUSSION
3.1 Performance Metrics
Before training, the dataset was inspected to ensure the presence
of images in each class. The script verifies the existence of class
directories and counts the number of images:

Found X images in ’elephants’
Found Y images in ’others’

(1) X: Number of Images in the ”elephant” Class
(2) Y: Number of Images in the ”others” Class

The final model acheievd the following accuracy and loss:

(1) Test Dataset Loss: 0.0467
(2) Test Accuracy: 98.31 %

Convergence was indicated by the model’s learning curves which
showed an increase in accuracy as well as a decrease in loss on both
training and validation datasets. These precision and recall values
show that the model can properly identify both classes with very
few misclassifications. The pre-trained base model-MobileNetV2
[7] came in the middle between computational cost and accuracy.
The pre-trained weights from ImageNet [6] made it possible for
the model to use learned features, saving time during training and
improving convergence speed.

Data augmentation [3] played a crucial role in enhancing the
model’s generalization capabilities. By introducing variability in
the training data, the model became more robust to changes in
orientation, scale, and lighting conditions, reducing overfitting and
improving performance on unseen data.

3.2 Inference Testing
Inference testing on unseen data validated the model’s robustness
across varied environmental conditions, including lighting and
backgrounds. The model demonstrated high accuracy in distin-
guishing elephants from non-elephant images, emphasizing its
utility for real-world applications.

A threshold was set at the probability of 0.5 at which a Ele-
phant class will be predicted. With enough individual images of
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these Elephants, this architecture can be employed to a bigger
dataset and the model can be even more robust.

Below are the confusion matrices (the confusion matrix offers a
comprehensive view of the model’s classification performance,
allowing for a nuanced understanding of its strengths and
weaknesses across different classes. It serves as a vital tool for
improving model performance through targeted interventions
such as retraining, hyperparameter tuning, or adjustments to the
dataset) for all the three architectures we have experimented and it
shows clearly that performance of MobileNetV2 surpasses other
architectures significantly on unseen data.

Fig 10. Confusion Matrix for MobileNetV2 Architecture

The final model acheievd the following accuracy and loss:

(1) Test Dataset Loss: 0.0467
(2) Test Dataset Accuracy: 98.31 %

Fig 11. Confusion Matrix for CNN Architecture

The final model acheievd the following accuracy and loss:

(1) Test Dataset Loss: 0.3093
(2) Test Dataset Accuracy: 86.54 %

Fig 12. Confusion Matrix for VGG16 Architecture

The final model acheievd the following accuracy and loss:

(1) Test Dataset Loss: 0.5855
(2) Test Dataset Accuracy: 85.45 %

Recommended Model:

Based on the performance metrics and experiments discussed
in the paper the MobileNetV2 architecture is recommended as
the best model for elephant classification due to its lightweight
nature, computational efficiency, and high accuracy. It achieved
98.31 % accuracy on the test dataset, much better than the other
architectures like CNN (86.54 %) and VGG16 (85.45 %). Its pre-
trained ImageNet weights and the use of advanced techniques such
as inverted residual blocks and depthwise separable convolutions
made it highly effective for this task of elephant classification.

3.3 Conclusion and Future Work
This test shows that deep learning models, especially MobileNetV2
[7], are a really powerful answer to wildlife monitoring and con-
servation, especially in their ability to identity elephants from
anything else. Applying transfer learning [1], data augmentation
[3], and custom layers helps improve the generalization and
classification [8] functions of the model. The results stress further
the applicability of deep learning models to wildlife conservation
and other real-world applications. The work could be built on in
future studies to further improve model performance, extend into
multi-class classification, and find real-world applications.

Future work will focus on:

(1) Individual Identification of Elephants:
—Implement a system to identify individual elephants using

unique physical traits such as tusk shape, ear patterns, and
scars

—Incorporate advanced models like EfficientNet or fine-tuned
transformers for feature-rich classification

—Utilize Siamese or triplet networks for similarity-based
learning to distinguish individuals
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(2) Size Estimation:
—Extend the model to estimate the size of elephants by incor-

porating depth information or using object-detection models
like YOLO or Faster R-CNN

—Train with datasets annotated with size-related metadata
(3) Augmentation of Dataset: Include more varied environmental

conditions and additional labeled data, specifically focusing on
individual features

(4) Real-time deployment:
—Optimize the model for edge devices for real-time monitor-

ing
—Explore TinyML for reducing computational requirements

further without sacrificing accuracy
(5) Incorporation of Advanced Augmentation: Integrate domain-

specific augmentations like brightness adjustment and partial
occlusion to improve robustness

(6) Multi-Class Classification: Extend the model to identify other
species or classify elephant subcategories

The outlined steps would make the model even more robust and
practical for field deployment, helping conservationists monitor
and analyze elephant populations effectively.
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